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ABSTRACT 

The United States Navy’s interest in high-energy lasers (HELs) dictates the need 

for further study into the propagation of laser light through different atmospheric 

conditions. Due to the amount of energy required to power these laser weapons systems 

and the limited amount of available energy onboard ships, different energy storage 

systems need to be explored.  

For this research, two locations were studied: the coast of Cuba and the coast of 

Russia. These two locations were studied during moderate winter conditions for varying 

laser output power: 150 kW, 500 kW, and 1 MW. The laser performance code ANCHOR 

was used to estimate the number of successful HEL engagements that can proceed 

against a certain target using various configurations of energy storage as the laser output 

power is varied. 
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I. INTRODUCTION 

Directed energy (DE) weapons will be an integral part of the future battlespaces. 

Since HEL engagements cost only dollars per shot and travel at the speed of light, they 

may provide the U.S. Navy with the upper hand in many scenarios. The Navy recently 

deployed its first Laser Weapon System (LaWs) on USS Ponce (LPD 15) in 2014. The 

successful employment of this weapon has demonstrated to the armed services and the 

public that HELs are viable weapon systems. 

This thesis will investigate the effects of thermal blooming and certain 

atmospheric conditions for various laser power levels as well as the pros and cons of 

different energy storage methods. The laser output powers of interest are 150 kW,  

500 kW, and 1 MW. The atmospheric data will come from laser environmental effects 

definition and reference (LEEDR), which is a program that characterizes the atmosphere 

based on gathered data for various locations and conditions. The performance of these 

lasers in different atmospheric conditions will be evaluated using ANCHOR, a code 

developed by the Directed Energy Group at the Naval Postgraduate School. The overall 

number of shots for a given energy storage system, lead acid or lithium-ion, will also be 

studied using ANCHOR. The purpose of this analysis is to compare how the number of 

shots per energy storage system is affected by the laser output power, engagement 

geometry, and the weather. 
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II. OVERVIEW OF DIRECTED ENERGY

A. HISTORY 

The desire to use laser weapons for the engagement of enemy threats has been 

around for decades. There are many types of laser technologies that could be used for 

weapon systems, including chemical lasers, solid-state lasers (SSLs), and free electron 

lasers (FELs). A laser’s ability to engage a target at the speed of light and destroy it for 

only a few dollars per shot is a benefit that cannot be ignored. There have been numerous 

programs, some more successful than others, that have tried to implement HELs as 

weapon systems on various types of platforms for use against enemy targets. The purpose 

of this study is to explore possible near-term solutions and study the pros and cons of 

each.  

B. ADVANTAGES AND DISADVANTAGES 

To fully understand the benefits of HELs, some of the limitations of kinetic 

weapons should first be considered. Traditional kinetic weapons tend to cost on the order 

of hundreds of thousands to millions of dollars per engagement, and once the ordinance is 

expended, there is no way of replenishing the magazine while out to sea. Kinetic energy 

weapons travel at speeds two to three times the speed of sound, but so do their possible 

targets, so the target may not be destroyed far enough out to prevent collateral damage to 

the engaging platform even with the destruction of the target. Also, certain targets can use 

the transit time to out-maneuver the weapon. Considering the limitations of kinetic 

weapons, it is easy to see why a weapon that travels at the speed of light is in such high 

demand. Another key benefit is that lasers are all-electric weapons, so their magazine is 

only limited by the available electric power. In order to successfully employ an HEL on a 

naval platform, an energy storage system will likely be required, since the ship may not 

be able to provide the instantaneous power needed to fire the weapon. Another benefit of 

having an energy storage system is that it would allow the weapon to operate for a certain 

length of time without drawing power from the ship. The ability to counter threats at the 

speed of light and destroy targets for only dollars per shot is a game-changing effect. 
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C. TECHNOLOGIES 

1. Chemical Lasers

There are many types of laser weapons that are able to successfully engage and 

destroy targets, but they are not all desirable for naval applications. The first type of laser 

to reach MW power levels was the chemical laser, which operates on the principle of 

population inversion by an exothermic chemical reaction [1]. These lasers produce 

harmful exhaust chemicals, tend to be very large, and have magazines limited by the 

amount of chemicals they can hold. In the recent past, these types of lasers have been 

utilized by the U.S. Air Force in developmental programs like the Boeing Airborne Laser. 

Due to the harmful gases and limited magazines, they are not safe or practical for naval 

applications. 

2. Free Electron Lasers

FELs work by sending a beam of relativistic electrons through a magnetic field 

that causes the electrons to wiggle back and forth and emit light [1]. They are believed to 

be scalable to the MW level because the gain medium (the relativistic electron beam) is 

continually replenished. Therefore, there is no concern about damage to the gain medium 

due to excessive heat. Certain configurations of FELs are tunable to different 

wavelengths, which enables better propagation through changing atmospheric 

conditions [1]. They are all-electric weapons that require only ship power to operate, 

meaning they have an unlimited magazine as long as there is fuel on board. FELs are not 

a near-term solution due to their current size, lack of power, relative immaturity, and 

production of ionizing radiation. However, it is believed that this technology may be 

necessary to engage ballistic or high-speed missile threats from a naval platform.  

3. Solid-State Lasers

SSLs are a near-term solution that will allow the Navy to engage certain relevant 

but slower moving threats (e.g., drones and small craft). SSLs are comprised of a few 

major components, the first being a pumping source. The pumping source is a laser or 

flash lamp and is used to excite the bound electrons in the gain medium. This results in a 
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population inversion, which in turn creates laser light at a certain frequency. Once the 

population inversion has occurred, laser light is emitted due to the constructive 

interference of photons generated as electrons drop from an excited state to a less excited 

state. The frequency of the laser light is dependent on this change in energy and so 

depends on the type of gain medium. The last major components of many SSLs are the 

mirrors on both ends of the medium that create a resonant cavity. This allows the power 

to build up over many passes. One mirror is slightly less than 100 percent reflective so 

that light can be out coupled and sent to the beam director for use on a target. SSLs are 

thought to be limited to the sub-MW class due to the thermal restrictions of the gain 

medium. The higher the output power, the greater the temperature in the medium and the 

more risk that damage to the medium will occur. SSLs are limited to operating at a single 

wavelength, but gain media exist that lases at certain wavelengths with superior 

propagation characteristics. Though their output power is not at the MW level, it has been 

proven that that kW class lasers can be employed against some of the current threats the 

Navy faces. 

D. LASER WEAPONS SYSTEM 

The Navy’s recent focus has been on SSLs. It has been able to successfully 

deploy a Laser Weapon System (LaWS) with an output power of around 35 kW aboard 

the USS Ponce. The usefulness of this laser has been demonstrated by its abilities to 

engage targets and seamlessly integrate with the ship’s combat systems  

suite [2]. With the success of LaWS, the Navy has now refocused its efforts to upgrade 

the output power of the laser to the ~100 kW level and to integrate the laser system into a 

ship’s electrical and plumbing systems.  
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III. ATMOSPHERIC PROPAGATION OF HIGH-ENERGY
LASERS 

A. EXTINCTION 

Extinction is comprised of four major components: aerosol scattering, aerosol 

absorption, molecular scattering and molecular absorption. Absorption can be described 

as the “capture of photons at one energy level with a resulting re-emission of photons at 

another, lower, energy level” [1]. Scattering causes photons to be elastically deflected in 

random directions. The consequences of both processes cause a decrease in the overall 

energy delivered to the target [1]. These two effects negatively affect HEL performance 

and must be understood while designing a SSL laser for naval applications.  

Beer’s law describes the power 𝑃𝑃(𝑧𝑧)  attenuation of the laser light due to 

scattering and absoprtion: 

0( ) zP z P e e−=   (1) 

where 𝑃𝑃0 is the initial power of the laser, 𝜀𝜀 is the extinction coefficient, and 𝑧𝑧 is the 

distance traveled.   

The extinction coefficient 𝜖𝜖 takes into account scattering and absorption for both 

molecules and aerosols. Figure 1 shows how 𝜀𝜀 varies with wavelength; it is clear that 

there are certain wavelengths that intrinsically allow better propagation at ~ 1 µm, 1.5 

µm, 2.25 µm, and 3.5 µm. The horizontal and vertical axes are log scales, which means 

that the extinction coefficient is orders of magnitude higher than at the aforementioned 

propagation wavelengths. For this research, the wavelength 1.0642 microns will be used 

due to its superior propagation characteristics in maritime environments. 
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Figure 1.  LEEDR results for atmospheric extinction for varying wavelengths 
in the summer in Bahrain 

1. Molecular Absorption and Scattering 

Molecular absorption and scattering are due to interactions of photons with the 

gases in the atmosphere. Molecular absorption comes primarily from H2O and CO2 

molecules. It depends on the discrete energy levels of the molecules, 

 hcE hf
λ

∆ = =  , (2) 

where the change in discrete energy levels is Δ𝐸𝐸, ℎ is Planks constant, 𝑓𝑓 is the frequency, 

𝜆𝜆 is the wavelength and 𝑐𝑐 is the speed of light. The extinction due to molecular 

absorption is heavily dependent on the wavelength of the laser light. Since the Navy 

operates in a maritime environment, H2O content (in the form of humidity) is especially 

important when selecting the laser wavelength. Molecular scattering is a form of 

Rayleigh scattering, which scales as 1/𝜆𝜆4  and particle size is much smaller than the 

wavelength.  
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2. Aerosol Absorption and Scattering 

Aerosols are small particles of liquids or solids in the atmosphere (smoke and 

water droplets, for example). These, too, have an effect on the attenuation of laser light 

through the atmosphere. Aerosol density is normally greater at lower altitudes, making 

the effects of aerosol absorption and scattering more influential at lower altitudes.  

Light scattering and absorption for aerosols is described by Mie theory, which is 

valid when particle size is approximately equal to the wavelength. Mie calculations tend 

to be intricate and depend on the bulk optical properties of the aerosol as well as the 

particle size. Overall, the aerosol scattering/absorption coefficients tend to be relatively 

weak functions of the wavelength relative to molecular absorption.   

Comparing the effects of scattering and absorption for both molecules and 

aerosols, using a program called MODTRAN, Figure 2 shows that for 𝜆𝜆 = 1.0642µm, the 

extinction coefficient is low for molecular absorption, molecular scattering, and aerosol 

absorption. The effects of molecular absorption and scattering are highly wavelength 

dependent, whereas aerosol absorption and scattering are not.  

 
Figure 2.   MODTRAN results for extinction for both molecular and aerosol 

absorption and scattering in a tropical maritime environment with 
visibility at 23 km 
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B. TURBULENCE 

Turbulence is the result of local variations of the index of refraction of the air due 

to small changes in the temperature. These variations can disrupt the focus of the laser 

beam. One of the biggest drivers of turbulence in a marine environment, at altitudes less 

than 50 m, is the air-sea temperature difference. A larger temperature difference will 

cause more turbulence. 

The total effects of turbulence can be described by the Cn
2 value, which varies in 

both time and space. These values normally range between 10–13 m-2/3, indicating 

stronger turbulence, to 10 -17 m-2/3, indicating weaker turbulence. Additionally, the Fried 

parameter, ro, incorporates information about Cn
2 along the beam path. For a focused 

beam, it is defined as   

( )
6/5

3/53/5 2
0.33o

n

r
R C

λ
=   (3) 

where R is the range to the target. Assuming a constant Cn
2, the Fried parameter will be 

larger with a small Cn
2 and small with a large Cn

2. When Fried initially came up with this 

parameter, he thought of it “as a diameter above which imaging resolution does not 

improve with increasing telescope size” [1]. In other words, if the r0 value is smaller than 

the beam director size, the overall performance of the laser would decrease significantly 

at the target due to turbulence. 

Figures 3 and 4 show the difference between weak turbulence and strong 

turbulence at a range of 5 km. Comparing the two figures, the effects of turbulence 

become very apparent. These two figures are snapshots in time of the irradiance at the 

target. The irradiance pattern in Figure 4 (strong turbulence) will fluctuate randomly. In 

that case, the peak irradiance on the target can be the same or even higher than the weak 

turbulence case, but the time averaged irradiance over the entire dwell time will be less.   
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Figure 3.  WaveTrain irradiance results for a 100 kW laser, at 1.0642 µm, at 
5 km when Cn

2 = 1 x 10–18 m-2/3 (weak turbulence) 

Figure 4.  WaveTrain irradiance results for a 100 kW laser, at 1.0642 µm, at 
5 km when Cn

2 = 1 x 10–14 m-2/3 (strong turbulence) 

C. THERMAL BLOOMING 

Thermal blooming is a nonlinear effect caused by the heating of the surrounding 

air, which occurs as the power of the HEL increases. The heating of the air decreases the 

density of the air and therefore alters the index of refraction, resulting in a change in the 
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intended propagation path. Specifically, as the temperature of the column of air goes up, 

the air acts like a diverging lens as shown in Figure 5 [3]. The left side of Figure 5 

represents the laser beam as it propagates through the air, while the right side is what the 

beam would look like on the target after traveling a distance of 𝑧𝑧.  

Figure 5.  The side view and end view of the effects of thermal blooming 

Wind can alter the effects of thermal blooming. Relative motion between the 

beam and the air introduces cooler air into the path of the beam. As the air crosses the 

beam, it warms up. This temperature gradient, in addition to acting like a diverging lens, 

causes the beam to bend into the direction of the wind as shown in Figure 6. For Figure 6, 

the picture on the left has no wind, while the picture on the right has wind perpendicular 

to the beam path.  

Figure 6.  The effects of wind and thermal blooming. Source: [4]. 
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Thermal blooming can be described by equation 4, where 𝑁𝑁𝐷𝐷 is the distortion 

number, 𝑧𝑧 is the slant path distance, 𝛼𝛼(𝑧𝑧) is the overall absorption coefficient (molecular 

plus aerosol), and 𝑉𝑉𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤(𝑧𝑧) is the effective wind speed perpendicular to the beam. Also, 

𝑃𝑃 is the power of the laser beam, 𝑘𝑘 is the wave number, 𝐷𝐷(𝑧𝑧) is the diameter of the beam, 

𝜌𝜌𝑜𝑜 is the density, 𝑐𝑐𝑝𝑝 is the specific heat, 𝑛𝑛𝑇𝑇(𝑧𝑧) is 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 which is the rate of change of the 

index of refraction with respect to temperature, and 𝑇𝑇(𝑧𝑧) is the beam transmission [1].  

 ( ) ( ) ( )4 2
( ) ( )

T
D

o p windpath

z T z n zkPN dz
C V z D z

a
ρ

= − ∫   (4) 

The effects of thermal blooming become more prevalent when 𝑁𝑁𝐷𝐷 > 25 [1]. Equation 4 

indicates how various parameters affect thermal blooming. For example, scenarios with 

little to no effective wind cause ND to increase and therefore thermal blooming becomes 

worse. Considering some of the Navy’s possible engagement scenarios (e.g., drones and 

small boats), understanding the effects of thermal blooming are vital to the successful 

employment of HELs.   

 As laser technology continues to mature, there is a strong desire to continue to 

increase the output power of the laser. However, there may be limitations imposed by 

thermal blooming on output power in high absorbing regions (e.g., low altitudes and 

regions of high molecular absorption). Equation 5 can be used to estimate the critical 

power, 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, which is the maximum output power which correlates to the maximum 

irradiance on target for given atmospheric conditions. The constants 𝑎𝑎 and 𝑚𝑚 are 

dependent on the overall beam shape. Above this Pcrit, the increased thermal blooming 

actually reduces target irradiance.  

                    

1/
1

(1 )

m

crit
D

PP
N a m

  −
=   −     (5) 

Figure 7 shows that up to a certain output power, irradiance on the target continues to 

increase, but then falls off above Pcrit. The critical power decreases as the distortion 

number increases; thus, the same trends that increase ND will decrease Pcrit. 
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Figure 7.  Thermal blooming effects on output power scaling 

D. ANCHOR 

In order to evaluate different power lasers against varying targets, NPS’s Directed 

Energy Group developed a laser performance code called ANCHOR. This code uses 

analytical scaling laws that characterize laser performance. Since it uses analytical 

scaling laws to derive its figures of merits, results are achieved on the order of seconds 

vice hours when compared to full diffraction codes. This program takes atmospheric 

inputs from a program called LEEDR.  

The figures of merit that ANCHOR produces are time-averaged irradiance, 

power-in-the-bucket, dwell times, and total number of shots given a prescribed energy 

storage system. Table 1 shows a list of user defined inputs that will be used in this thesis 

to study a multitude of different engagement scenarios.  

Table 1.   User-defined input parameters for ANCHOR  

Parameter Description 
Laser power  150, 500, 1000 kW 
Wavelength   1.064 µm 
Beam quality 𝑀𝑀2= 3 
RMS jitter  5 µrad 
Beam director diameter  0.3 m 
Beam type  Uniform 
Beam director height  10 m 
Atmospheric data LEEDR 
Wall plug efficiency 20% 
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IV. DAMAGE MECHANISMS 

The losses accrued as laser light travels through the atmosphere is only part of the 

issue. It is important to understand the interaction of the laser light with the target to 

understand how damage occurs. When using an HEL to destroy a target, there are two 

common classifications of kills: hard and soft. A soft kill can be defined as damage to 

some sub systems of the target that would disturb the target’s operation [3]; an example 

of this kind of kill would be blinding or destroying the seeker of a missile. A hard kill is 

more traditionally understood as destroying the target (e.g., causing it to disintegrate in 

flight). For the purpose of this research, only hard kills will be considered; furthermore, 

as a simplification, a hard kill will be defined as melting a hole through an area of  

100 cm2. Whether this amount of damage is sufficient to induce a hard kill depends on 

the specific target. As specific laser/target interaction information is often classified, this 

will define a constant metric that will facilitate analysis of weapon performance. 

In order to melt a portion of the target, enough energy must be deposited onto the 

material so that it initially reaches its melting point and then melts. This energy must be 

deposited at a rate that exceeds any loss mechanisms--namely, conductive, convective, 

and radiative losses. Conductive losses can be described as the flow of energy from hot 

areas to cold [3]. Convective losses are those that occur by air flowing over the target. 

Radiative losses occur as the target area heats up and emits as blackbody. 

The set of equations used in the following pages are rough estimates that can be 

used to determine the dwell time necessary to destroy the target. The first thing that has 

to be calculated is the energy needed to reach the melting point,  

 1 pQ c m T= ∆  , (6) 

where 𝑐𝑐𝑝𝑝 is the specific heat, 𝑚𝑚 is the mass of the necessary volume of material to 

constitute a hard kill, and ∆𝑇𝑇 is the difference in temperature between the melting 

temperature and the temperature of the environment. The energy needed to melt the 

material at its melting point is,  
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 2Q m H= ∆ ,  (7) 

where ∆𝐻𝐻 is the heat of fusion for a given material. The total energy needed to melt a 

given material is therefore just the sum of 𝑄𝑄1 and 𝑄𝑄2: 

  
 1 2meltQ Q Q= +  . (8) 

Next, we consider the loss mechanisms. The power radiated away as a blackbody 

is 

 4 4( )rad f melt environmentP A T Teσ= −  , (9) 

where 𝜀𝜀 is the emissivity, 𝜎𝜎 is Stefan-Boltzmann’s constant, 𝐴𝐴𝑓𝑓 is the frontal area, and 

𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 are the associated temperatures in Kelvin. The power conducted 

away can be estimated by  

 ( ) /cond s melt environmentP kA T T x= − ∆  , (10) 

where 𝑘𝑘 is the thermal conductivity, 𝐴𝐴𝑠𝑠 is the side area, and ∆𝑥𝑥 is the distance of the 

temperature gradient. The total power lost from these mechanisms is then 

 loss rad condP P P= +  . (11) 

Now that the energy required to destroy the target and the loss mechanisms have 

been calculated, the required dwell time can be determined  

 
( )

melt
d

bucket tgt loss

QT
P f P

=
× −

 , (12) 

where 𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is the power deposited in the target area, and 𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡 is the fractional target 

absorption. Equations 1 through 7 can be applied to any material and scenario in order to 

get a reasonable order of magnitude estimate of what the necessary dwell time would be 

for a given power-in-the-bucket. When the power-in-the-bucket multiplied by 𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡 does 

not exceed 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, the dwell time diverges and obtaining a hard kill is no longer possible. 
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Now that the general equations have been presented it is important to do a few 

examples to get an idea of possible dwell times. For the purposes of illustration, consider 

a 3 mm thick aluminum sheet (as shown in Figure 8). We define the bucket as the region 

on the target we wish to melt to sufficiently to induce a hard kill; in this example, the 

bucket diameter is 10 cm (red cylinder in Figure 8). Further, suppose that the laser has 

sufficient output power to deliver 60 kW within this bucket area. The material parameters 

for aluminum (Table 1) can be used to solve Equations 1 through 7 and achieve the 

results in Table 2. 

 
 

Figure 8.  Aluminum sheet, 3 mm thick 

 

Table 2.   Damage physics parameters for 3 mm thick aluminum 

Parameter Description Value 
cp  Specific heat 904 J/kgK 
m  Mass 0.063 kg 
∆H  Heat of fusion 387 J/g 
ε Emissivity 0.2 

Af Area(frontal) 0.0078 m2 
As Area (side) 9.42x10−4 m2 

Tmelt  Target melting point 933 K 
Tenvironment Temparature of environment 298 K 

∆T  Change in temperature 635 K 
k  Thermal conductivity 210 W/mK 
∆x  Distance of temperature gradient 0.02 m 
ftgt Fractional target absorption 0.2 
σ  Stefan − boltzmann constant 5.67x10−8 W/m2K4 

“Bucket” 
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After doing the calculations, it is easy to see that the power conducted away is the 

dominate term for losses. In this example, the power in the bucket (60 kW) exceeds the 

total losses (7.3 kW), and the target is melted in approximately 13 seconds.  

For another example, we keep all of the parameters the same except change the 

material to titanium (Table 3). 

Table 3.   Calculated values for 3 mm thick aluminum 

Parameter Value 
Q1 37 kJ 
Q2 24 kJ 

Qmelt 61 kJ 
Prad 66 W 

Pcond 6.3 kW 
Ploss 7 kW 
Td  13 sec 

 

Plugging in the given parameters into the previously mentioned equations, the 

following values are achieved as shown in Table 4 and Table 5. 

Table 4.   Damage physics parameters for 3 mm thick titanium 

Parameter Description Value 
cp  Specific heat 528 J/kgK 
m  Mass 0.106 kg 
∆H  Heat of fussion 435 J/g 
ε Emissivity 0.63 

Af Area(frontal) 0.0078 m2 
As Area (side) 9.42x10−4 m2 

Tmelt  Target melting point 1923 K 
Tenvironment Temparature of environment 298 K 

∆T  Change in temperature 1625 K 
k  Thermal conductivity 17 W/mK 
∆x  Distance of temperature gradient 0.02 m 

ftarget Fractional target absorption 0.2 
σ  Stefan − boltzmann constant 5.67x10−8 W/m2K4 

 



19 

Table 5.   Calculated values for 3 mm thick titanium 

Parameter Value 
Q1 91 kJ 
Q2 46 kJ 

Qmelt 137 kJ 
Prad 3.8 kW 

Pcond 1.3 kW 
Ploss 5.1 kW 
Td  20 sec 

  

Comparing these values to aluminum, it is clear to see that one of the reasons the 

dwell times are higher is because the energy needed to melt the target is almost double 

that of aluminum. Every target will have different properties and vulnerabilities, 

including those constructed from same types of materials. Therefore, these kinds of 

calculations should be considered “ballpark” estimates that we will use for other aspects 

of our analysis.  
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V. THE REASON FOR ENERGY STORAGE 

The DDG-51 Arleigh Burke class destroyer has three gas turbine generators that 

each output 2500 kW, totaling 7.5 MW of power. However, since the ship has an 

advanced combat systems suite and a large power demand throughout the ship, there is 

only 150 kW of available power. HELs require an exorbitant amount of energy, on the 

order of ~100 kW to MWs of power, and because of this, an energy storage system is 

necessary in order to operate them. The amount of energy storage that is needed is 

dependent on the overall wall plug efficiency of the laser system and the output power of 

the laser. For example, most laser systems have a wall plug efficiency of about 20 to 30 

percent, which means that a laser with an output of 100 kW would need between 300 kW 

and 500 kW of power to operate. This is more energy than a ship can provide, so the use 

of an energy storage system is vital to the successful integration of HELs onto naval 

platforms.  

There are many different types of energy storage technologies including, but not 

limited to, batteries and flywheels. When thinking about energy storage, there are two 

main attributes to consider, energy density and power density. Energy density is the 

amount of energy that can be stored compared to the weight or size, while power density 

is how quickly the stored energy can be released compared to the weight or size. Figure 9 

shows how different energy storage systems compare to one another in terms of these 

density characteristics. The ideal case would be to have an energy storage system that has 

both the highest energy and power density (top right corner). However, nothing exists in 

this region, so tradeoffs have to be made. For this study, we will focus primarily on lead 

acid and lithium-ion batteries. They are a safe, near-term solution that offer a good 

mixture of energy and power density.  
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Figure 9.  Energy storage options based on energy density vs. power density. 
Source: [5]. 

A. LEAD ACID BATTERIES 

Lead acid batteries are a mature and safe technology that are already on board 

Navy ships. As seen in Figure 9, batteries have a relatively high energy density 

and a low to medium power density. Lead acid batteries have a total energy 

density of ~ 200 MJ/m3 [6]. Key attributes are that lead acid batteries tend to take on 

the order of hours to recharge and should not be discharged lower than 50 percent due 

to the reduced life cycle of the battery that will ensue. 

B. LI-ION BATTERIES 

A newer technology is lithium-ion batteries, which have a much higher energy 

density (~1000 MJ/m3) and a better discharge tolerance (~80 to 90 percent). Li-ion 

batteries work under the same simple premise of transferring ions to electrodes during the 

charging and discharging periods [7]. Since the energy density is almost 5 times greater 

than that of a lead acid battery, the overall weight and volume is significantly less than 

that of a lead acid system; they also charge faster than lead acid batteries, which makes 

them an appealing alternative. However, lithium-ion batteries have been known to be 

potential fire hazards, which could make their relevance as an energy storage system 

questionable [8]. 
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C. FLYWHEELS 

Flywheels are similar to batteries with respect to energy density but have a much 

higher power density. A flywheel is a device that rotates at very high speeds (~60,000 

rpm) that can convert this mechanical energy into electrical energy [9]. Flywheels can 

charge and discharge rapidly, which is ideal for multi-shot engagements (i.e., swarm 

attacks). A drawback to flywheels is there are no commercial off the shelf solutions 

available, so the energy storage system would have to be specifically designed for the 

platform. 

D. ENERGY STORAGE OVERVIEW 

Figure 10 is a picture of the major components that would encompass a ship’s 

electrical bus (in this case, a DDG-51 class destroyer), an energy storage system, and a 

laser weapon system. This figure can be broken down into several major components, 

including the AC-to-DC converter that converts 450 VAC from the ship’s main bus to 

1000 VDC that is used to charge the energy storage device, the DC-to-DC converter that 

converts 1000 VDC to 240 VDC that is needed by the HEL, and the rest of the electrical 

outline of a DDG-51 class destroyer.  
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Figure 10.  Diagram of major components of a laser weapons system and ship 

components 

Energy storage systems that were used for this research were lead acid batteries 

and lithium-ion batteries. For the lead acid batteries (Figure 11), a string is defined as one 

hundred 12V batteries. For the lithium ion batteries (Figure 12), a string is defined as  

two hundred seventy 3.3 V batteries. In order for the energy storage system to be viable, 

it must have a nominal voltage of ~1000 V, thus the reason for 100 lead acid batteries and 

270 lithium ion batteries for a string. 

 
Figure 11.  XE 70 Genesis battery (lead acid) 
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Figure 12.  Saft VL 30 PFe lithium ion battery 

Tables 6 and 7 give the basic properties of the batteries that will be used for the 

following simulations. One string of lead acid batteries weighs approximately 2500 kg, 

has ~150 MJ of energy, and takes up ~ 1 m3 of space. For 1 m3 of  lithium-ion batteries, 7 

strings,  there will be ~750 MJ of energy, and a weight of ~2200 kg.  

Table 6.   Properties of lead acid battery Genesis XE 70 

Lead Acid Battery: Genesis XE70 
Volume (m3) Mass (kg) Energy (Wh) Volts 
10-2 25 800 12 

 

Table 7.   Properties of lithium-ion battery VL-30 PFe 

Lithium-ion Battery: VL-30 PFe 
Volume (m3) Mass (kg) Energy (Wh) Volts 
5x10-4 1.1 110 3.6 

 

At first glance, the amount of available energy in the 1 m3 of lithium ion batteries 

is five times greater than that of the lead acid; however, that is not necessarily the case. 

Based on the simulations and the general characteristics of each battery, the life cycle of a 

lead acid battery not only decreases when discharged below 50%, but it also discharges at 

a slightly different rate. Similarly, when lithium-ion batteries are discharged below 20%, 

the discharge rate changes. For the purpose of this research, lead acid batteries will not be 

discharged below 50% and lithium-ion below 20%. Taking these conditions into account, 
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1 m3 of lead acid batteries (1 string) has 75 MJ of energy available while 1 m3 of lithium-

ion (7 strings) has 600 MJ of energy available. With that being said, the amount of energy 

available is ~8 times more for an equal volume of lithium-ion batteries.  
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VI. RESULTS 

The comparisons of 150 kW, 500 kW, and 1 MW lasers were done in two 

locations: off the coast of Russia and off the coast of Cuba. The atmospheric information 

came from LEEDR, where the preset for a moderate winter day was selected. The laser 

parameters listed in Table 1 were used in ANCHOR for these scenarios.  

ANCHOR provides the following figures of merit: time averaged irradiance, 

power in the bucket, and dwell times. Another useful figure of merit that was added to the 

original ANCHOR code is “shot count,” which is the total number of possible kills on a 

certain target for a given energy storage system. A shot will be defined as the time 

necessary to burn a 10 cm hole in a 3 mm thick aluminum sheet at normal incidence. The 

material properties and loss mechanisms from Table 2 and Table 3 will be used along 

with the energy storage properties of lead acid and lithium-ion batteries given in Tables 6 

and 7 to estimate the shot count in ANCHOR. The motivation for this study is to 

understand the capabilities of the different power lasers given certain atmospheric 

conditions against threats like swarm attacks, when there might not be enough time to 

recharge the energy storage device.  

For this study, a volume of 1 m3 of lead acid and lithium ion batteries will be 

used. The volume here refers only to the space occupied by the physical batteries, and not 

any cooling or other ancillary equipment. One string of lead acid batteries is 100 

batteries, which is equal to 1 m3 and a nominal voltage of 1000 V. One string of lithium-

ion batteries is equal to 270 batteries with a nominal voltage of 1000 V. In order to have 

1 m3 of lithium-ion batteries, seven strings of lithium-ion batteries will be paralleled 

together. The total amount of stored energy for 1 m3 of lead acid batteries is 150 MJ and 

750 MJ for 1 m3 of lithium-ion batteries. In these scenarios, the lead acid batteries will 

not be discharged lower than 50 percent and the lithium-ion below 20 percent. This gives 

the lead acid system 75 MJ of useable stored energy and the lithium-ion 600 MJ of usable 

stored energy. 
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A. FIGURES OF MERIT 

1. Irradiance 

Time averaged irradiance is the first figure of merit from ANCHOR. Figure 13 

shows a vertical slice of the atmosphere with the ship being placed at origin. The 

horizontal axis is the cross range away from the ship, the vertical axis is the altitude 

above the water, and the color indicates the time-averaged irradiance, using the log scale 

shown in the color-bar on the right. The black contour lines on the graph indicate 

different irradiance thresholds. For this example, the contour lines correspond to 

irradiances of 10 MW/m2, 5 MW/m2, and 1 MW/m2, starting from the left side of the 

graph and moving to the right. These lines can represent approximate kill thresholds 

against notional harder targets (for 10 MW/m2) to softer targets (1 MW/m2). These lines 

also can be used as quick references for the user when comparing different plots. For 

example, the 10 MW/m2 line tells the user that harder targets can be engaged inside of 

this line while softer targets can be engaged farther out.  

 
 

Figure 13.  ANCHOR: Time-averaged irradiance plot vs. target range and 
altitude 
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2. Power-in-the-Bucket

The next figure of merit that is produced by ANCHOR is time-averaged power-

in-the-bucket. As mentioned previously, the power-in-the-bucket is the amount of power 

that is deposited in a prescribed area on the target. Figure 14 is similar in appearance 

to Figure 13, but they describe two different things. In order to produce this figure, a 

bucket size has to be prescribed; in this case, the bucket is defined as a circle with a 

radius of 5 cm. Similarly to Figure 13, the horizontal and vertical axes represent the 

target range and altitude away from the ship, respectively. The color indicates the 

amount of power from the laser that falls within the 5 cm radius bucket, using the log 

scale shown in the color bar on the right. 

Figure 14.  ANCHOR: Power-in-the-bucket plot vs. target range and altitude 

3. Dwell Time

Figure 15 is a graph of the dwell time needed to kill a target. In order to display 

this graphically, the total energy needed to melt the target and the total losses need to be 

known. For this example, the target will be a 3 mm thick aluminum sheet and the values 

from Table 2 and Table 3 will be used. Like Figure 13 and Figure 14, the horizontal and 

vertical axes represent the target cross range and altitude away from the ship. The color 
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shows the dwell time in seconds shown in the color bar on the right. The black line on 

this graph indicates a hard kill with a 10 sec dwell time. Just beyond that line the graph 

turns to solid red, indicating that there is not enough energy being deposited, regardless 

of the dwell time, to destroy the given target. Inside of the black line indicates that the 

dwell time will be less than 10 secs to achieve a hard kill on the target.   

 
 

Figure 15.  ANCHOR: Dwell time plot vs. target range and altitude 

All three of these plots have their own relative merits. The time-averaged 

irradiance plot (Figure 13) indicates if there is enough power per unit area on the target to 

cause damage while Figure 14, the power-in-the-bucket plot, shows how much power is  

deposited into a prescribed area on the target. The difference between these two is that 

the prescribed area for power-in-the-bucket allows the user to define how large or small 

an area must be engaged to potentially destroy the target. The dwell time plot (Figure 15) 

takes into account the prescribed area and calculated losses to determine how much time 

is needed to destroy the target. 
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4. Shot Count for Moderate Winter off the Coast of Cuba for Varying
Energy Storage Systems and Laser Output Powers

This section will compare the difference in shot counts for 150 kW, 500 kW, and 

1 MW lasers versus the type of energy storage system. In order to determine the shot 

count, Equations 13 and 14 were used, where Eshot is the energy per shot, Scount is the shot 

count, Plaser is the output power of the laser, Weff is the wall plug efficiency, Td is the 

dwell time, and Eavail is the energy available in a given energy storage system. Similar to 

the aforementioned graphs, Figure 16, the horizontal and vertical axes indicate the target 

cross range and altitude away from the ship. The color shows the number of available 

shots per the given scenario, according to the color scale shown on the right. 

laser
shot d

eff
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W
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count

shot
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E
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Figure 16.  Shot count vs. target range and altitude: 150 kW moderate winter 
off the coast of Cuba (lead acid) 
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As the target range and altitude increases, the irradiance at the target decreases, so 

a longer dwell time is required for a successful kill, and thus there are fewer available 

shots for a given energy storage configuration. 

 

 
 

Figure 17.  Shot count vs. target range and altitude: 500 kW moderate winter 
off the coast of Cuba (lead acid) 

 

 
 

Figure 18.  Shot count vs. target range and altitude: 1 MW moderate winter off 
the coast of Cuba (lead acid) 
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For Figures 16, 17, and 18, the laser output power increases from 150 kW to 1 

MW but the overall effective range stays constant. Regardless of the output power, the 

figures show that the 3mm thick aluminum will not be destroyed at ranges around 4 km 

and further. The effects of thermal blooming limit the overall range at which a target can 

be successfully engaged. However, as the output power is increased the shot count goes 

up at closer ranges. For example, in Figure 16 at a range of 1 km out and 1 km high,  the 

total number of kills is ~ 20, where as in Figure 18 the shot count is ~ 30.  

The next set of graphs (Figures 19 to 21) illustrates the same range of laser output 

power at the same location, but this time with lithium-ion as the energy storage system. 

Though the energy storage device is different, the same trends should exist. If the laser 

power is low, then power-in-the-bucket is not much larger than the losses, which means 

dwell times will go up, energy per shot will go up, and the total number of shots will go 

down. Similarly, if the power is too high, thermal blooming will cause the power-in-the-

bucket to decrease, the dwell time to go up, the energy per shot to go up, and the overall 

shot count to decrease. 

 
 

Figure 19.  Shot count vs. target range and altitude: 150 kW moderate winter 
off the coast of Cuba (Li-ion) 
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Figure 20.  Shot count vs. target range and altitude: 500 kW moderate winter 
off the coast of Cuba (Li-ion) 

 

 
 

Figure 21.  Shot count vs. target range and altitude: 1 MW moderate winter off 
the coast of Cuba (Li-ion) 
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Regardless of output power, the overall shot count for the lithium-ion batteries is 

~ 8 times greater than the lead acid batteries. For example, in Figure 18, at a range of 

2 km out and 2 km high the shot count is ~ 20, where as in Figure 21, the shot count 

is ~ 160. This was the expected result given the energy density and discharge 

characteristics of lithium-ion batteries. Again, overall trends in maximizing shot 

count are the same regardless of battery type. 

5. Shot Count for Moderate Winter off the Coast of Russia for Varying
Energy Storage Systems and Laser Output Powers

The following scenario is similar to the one described in the previous section, 

with the only difference being a change in location. This scenario will compare the shot 

counts of a 150 kW, 500 kW, and 1 MW output power laser off the coast of Russia with 

moderate winter conditions. The energy storage systems will still be 1 m3 of lead acid and 

lithium-ion batteries. 

Comparing Figures 22 to 24 with Figures 16 through 18, similar trends are 

noticed. For this example, the effects of thermal blooming are more evident. As the 

output power increases from 500 kW to 1 MW, the effective range of the laser noticeably 

starts to decrease. As well as this, the trend of increased shot counts at closer range are 

obvious. Looking at Figure 22 at a range of 1 km out and 1 km high, the shot count is 

~ 25 where as in Figure 24 at the same ranges, the shot count is ~ 35.  
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Figure 22.  Shot count vs. target range and altitude: 150 kW moderate winter 
off the coast of Russia (lead acid) 

 

 
 

Figure 23.  Shot count vs. target range and altitude: 500 kW moderate winter 
off the coast of Russia (lead acid) 
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Figure 24.  Shot count vs. target range and altitude: 1 MW moderate winter off 
the coast of Russia (lead acid) 

Figures 25 through 27 show the corresponding results for lithium-ion batteries.  

 
 

Figure 25.  Shot count vs. target range and altitude: 150 kW moderate winter 
off the coast of Russia (Li-ion) 
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Figure 26.  Shot count vs. target range and altitude: 500 kW moderate winter 
off the coast of Russia (Li-ion) 

 

 
 

Figure 27.  Shot count vs. target range and altitude: 1 MW moderate winter off 
the coast of Russia (Li-ion) 

The overall trends are similar, but the shot count is ~ 8 times that of the lead acid 

system.    
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VII. CONCLUSION 

HELs are cost-efficient weapons that can have a well-defined place in the arsenal 

onboard U.S. ships. The main topic of study was how the atmosphere and energy storage 

system can alter the shot count of different output power lasers. The general trends show 

that thermal blooming starts to decrease the overall shot count at large ranges  (> a few 

km) as the power is increased, but at closer ranges (< 1 km) the shot count improves with 

increased output power. What this means is that 500 kW and 1 MW lasers may be better 

suited for things like swarm attacks close to the ship, while a 150 kW laser might deliver 

more kills for targets farther away. Of course, which power is optimum depends on the 

target and weather. Furthermore, a 1 MW laser can, in principle, dial back its output 

power to increase the shot count at larger ranges if it would be advantageous.  

The second focus of this study was energy storage. The benefits of lithium-ion 

batteries are clear; they are lighter, provide more shots, and have the ability to recharge at 

a faster rate. Lead acid batteries are significantly bigger, recharge slower, and provide 

fewer shots for a given volume. However, they are a safe alternative and are a proven 

technology that is already onboard naval platforms.  

Future work for these topics include the study of relative platform and target 

motion and its effects on thermal blooming.  
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